Development of a Predective Type-2 Neurofuzzy Controller
نویسندگان
چکیده
A controller that combines the main characteristics and advantages of three different control methodologies is proposed for the control of systems with nonlinearities and uncertainties. A neural network predictive control approach is implemented modifying the output of a controller with a fuzzy logic structure that uses type-2 fuzzy sets. Neural networks are also used to optimize the membership function parameters. The proposed controller is tested by simulation for the control of a bioreactor characterized by bifurcation and parameter uncertainty.
منابع مشابه
Adaptive Simplified Model Predictive Control with Tuning Considerations
Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...
متن کاملNeuro-fuzzy Network Based Adaptive Integrating Cotnrol
A self-tuning neurofuzzy integrating controller is derived in this paper for offset eliminating purpose. CARIMA plant model is used and the control law produces integral control terms in a natural way. Neurofuzzy networks are chosen to implement the direct self-tuning nonlinear integrating controller. The performance of the self-tuning integrating neurofuzzy controller is illustrated by example...
متن کاملEmbedded Interval Type-2 Neuro-Fuzzy Speed Controller for Marine Diesel Engines
Marine diesel engines operate in highly dynamic and uncertain environments, hence they require robust and accurate speed controllers that can handle the uncertainties encountered in these environments. The current speed controllers for marine diesel engines are based on PID and type-1 Fuzzy Logic Controllers (FLCs) which cannot fully handle the uncertainties encountered in such environments. Ty...
متن کاملUsing BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملModel-Reference Adaptive Control using Associate Memory Network
Model-reference adaptive control with neurofuzzy methodology is derived in this paper. Associate memory network(AMN) is investigated in detail to be the possible implementation as the direct self-tuning nonlinear controller. The essence of the neurofuzzy controller has been discussed and the local stability of the system is reached. The performance of the model-reference adaptive neurofuzzy con...
متن کامل